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Abstract—Crowd simulation is the process of simulating the
movement and behavior of a large number of people. This field is
continuously being improved by incorporating different theories
of how humans move and interact with their surroundings,
steadily increasing the realism of the simulation. Furthermore,
new techniques for calibrating simulation parameters, and eval-
uating the accuracy of simulation output, keep being proposed.
This paper presents a brief overview of these foundations and
argues that a fragmentation of the field into multiple incom-
patible solutions may impede progress towards comprehensive
social behavior models. It finally argues that abstractions of
human intent and behavior, proposed within the Embodied
Conversational Agents community, may suggest a useful path
towards bringing social crowds to new levels of realism.

Index Terms—crowd simulation, social behavior, parameter
calibration, model evaluation, unified framework

I. INTRODUCTION

Crowd simulation is the process of simulating the movement
and the behavior of a large number of people [1]. The majority
of crowd simulators envision humans as individualistic enti-
ties, who navigate their surroundings to achieve goals while
avoiding obstacles. Among the set of typical obstacles they try
to avoid, are the other humans. On the other hand, the term
social crowd simulation refers to simulations that treat other
humans as something more than mere obstacles, and based
on theories of human social behavior, see them as potential
interaction partners. These theories provide explanations for
how human behavior is influenced by the behavior of other
humans, as well as by the social or psychosocial context in
which the behavior takes place. Realistic crowd simulation
has become a fundamental research topic in computer science
due to its potential useful application in many different fields.
For example, it has been employed for social service training
and treating social phobias [2]. Another classic application
is in urban planning, where it can help predict the flow and
behavior of people in public spaces [3]-[5]. Moreover, crowd
simulation has been very useful for replacing background
actors in movies [6], and for populating video game environ-
ments [7]. All these applications would benefit from agents
capable of social reasoning, as social solutions tend to make
the crowds seem more believable [8], [9]. Thus, there is a
need for platforms that make it easier to adopt social models
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when populating virtual worlds. This is even more urgent
for immersive platforms such as Virtual/Augmented Reality,
which often require higher levels of realism to maintain the
suspension of disbelief. These requirements are partly satisfied
by Game Engines which facilitate the integration of high level
behaviors, navigation, animation, and rendering.

In addressing this need, researchers have successfully ap-
plied a range of social behavior theories, studied in psychology
and sociology, for generating and animating virtual human
behavior in crowd simulations. These behavior models sit on
top of a variety of navigation algorithms that let the virtual
humans traverse the virtual space. These simulations are also
being pushed towards greater realism through various ways of
objectively calibrating simulation parameters. Finally, different
ways to evaluating simulation models and their outputs are
constantly being invented.

The social simulation field therefore rests on a foundation
that consists of a number of sub-fields, each proposing a
specific approach and technical solution. This paper presents
a brief overview of each of these sub-fields, and then provides
a specific example of how challenging it can be to combine
state-of-the-art solutions. It concludes by arguing that the
fragmentation of crowd simulation research and technology
may be impeding progress, and that a common framework,
and a point of reference, may be useful.

II. RELATED WORK

The crowd simulation field rests on a foundation that
consists of a number of sub-fields, each proposing a specific
approach and technical solution: navigation algorithms, social
behavior models, calibration and evaluation techniques. We
will now quickly give some definitions and examples con-
cerning them.

Navigation Algorithms. A navigation algorithm is essen-
tially a solution for making an agent successfully traverse
an environment, from a starting position to a destination
position, without getting stuck. They usually employ two
components, one for global path planning which returns a
complete route from a starting point to a destination (e.g.
navigation meshes [10]), and the other for local obstacle avoid-
ance which deals with the dynamic part of the environment



that cannot be handled by a single computation (e.g. velocity
obstacles [11]). One particular approach [12] tries to minimize
the undesired motion stemming from disagreements between
global path planning and local collision avoidance. The authors
devised a technique for generalizing path planning trajectories
and velocities into strategies. Each strategy is a generalized
representation which can be compared and combined with
other strategies. For example, an agent may re-plan its global
path when collision avoidance suggests a detour, leading to
smoother trajectories.

Social Behavior Models. In social crowd simulations, hu-
mans are considered more than mere obstacles to avoid,
but rather as social entities that can be interacted with or
have social or psychological influence. Advances in this field
have relied on theories from sociology and psychology such
as: Social Group Models [13], Social Emotion Models [14],
and Social Activity Models [15]. By contrast, several crowd
simulations are based upon rules more akin to physics models
(such as fluid dynamics), rather than social ones. These
simulations, although representing crowd movements, do not
account for the social aspect, and are thus not part of social
crowd simulation.

Calibration Techniques. As crowd simulation tries to em-
ulate something as complex as human beings, the model
needs to capture many of their features through a range of
parameters. Thus, there is a clear need for a method that
finds the best value for every parameter of the simulation,
for producing acceptable results. Some approaches that can
solve this task are: Search Formulation [16], Optimization
Approaches [17], and Evolutionary Algorithms [18].

Evaluation Techniques. With increasing focus on the realism
offered by crowd simulation, there is a growing need to
evaluate them against real world data. Some examples of
available objective evaluation techniques include: Fundamental
Diagram [19], Entropy Metric [20], Edit Distance Metric
[21], Trending Paths [22]. Particularly noteworthy is [23],
which proposes an approach for selecting the pedestrian model
that best simulates a given scenario. The authors employ a
technique similar to the entropy metric for evaluating the
difference between simulated and real data. Moreover, they
employ manifold learning to craft a general representation
of crowd states which they call crowd space. This encoding
provides a natural way to represent a wide range of crowd
scenarios, where similar crowd scenarios lie near each other on
the manifold. By combining these two techniques, it is possible
to assess how well any given pedestrian model can simulate
a certain scenario. Then, there are also subjective approaches
which rely on user studies for evaluating the simulations [24].
These approaches are often preferred in highly immersive
environments such as in VR/AR.

Crowd Simulation Frameworks. Given that there are several
research areas contributing to the advancement of crowd
simulation, and that a “divide and conquer” approach can
provide good results, it is only natural that the field is getting
fragmented. This fragmentation may be related to the different
scientific backgrounds and objectives of research groups, as
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argued in [25]. The authors explain that crowd simulation is
an interdisciplinary field investigated by different scientific
communities. Each community may have its own set of
methods and techniques for studying pedestrian dynamics and,
sometimes, they take the same term to mean different things.
However, the goal is always the best possible behavior overall,
hence the idea of unification. The idea of unifying crowd sim-
ulation has already been explored in the literature. Vadere [25]
is one example of such effort, as it offers a common platform
containing several simulation models. End users can simply
pick and chose among these models to simulate pedestrian
dynamics, while developers can create new models and even
extend the framework. Moreover, Vadere offers a convenient
GUI to visualize the simulation process, and extract relevant
information for analyzing the results. Another notable example
is a crowd simulation framework called Menge [26]. The
framework aims at separating crowd simulation into decoupled
sub-problems, whose solution can then be more easily reused
by other members of the community. First, goal selection
involves determining what each agent wants to achieve based
on several factors such as psychology and world knowledge,
this is achieved through Behavioral Finite State Machine
(BFSM). Second, plan computation means devising a sequence
of actions for reaching the chosen goal, by employing several
techniques such as Navmesh, road maps, and velocity fields
based approaches. Finally, there is plan adaptation which
adjusts the previously computed plan to account for dynamic
phenomena, based on one of several available pedestrian mod-
els. These abstractions allow researchers to focus on a single
aspect of the simulation model, delegating the complexity
overhead of the remaining components to the framework itself.
It then becomes possible to compare simulation models at
a more granular level, since any of the components can be
specifically matched against its alternative. However, these
frameworks have some important limitations: they do not
offer any built in solutions to calibrate the model parameters,
nor to evaluate simulation outputs. This makes it difficult to
perform meaningful comparisons between components. Even
more importantly, they do not support the combination of
high level behaviors, which is a required feature towards a
comprehensive model of human social behavior.

III. AN EXAMPLE OF FRAGMENTATION

While the foregoing brief overview of the social crowd sim-
ulation sub-fields of navigation techniques, social modeling,
calibration techniques and evaluation techniques, has revealed
creative and vibrant research activity, it has also highlighted
how vastly different, and in some ways, incompatible the
contributions to the field have been. This is a worrying trend
of fragmentation that may threaten steady progress. As a case
study, to drive this point home, we will now compare three
influential, but different, papers which model group behavior.
They each propose a valuable and complementary model
of behavior, but bringing them together is fundamentally
challenging due to incompatible technical foundations.



The first paper [27] models group behavior by relying
on a leader-follower mechanic. Each group has a predefined
single leader agent that is moving towards a target position.
Every other agent in the group adapts its velocity vector
and orientation to follow the leader: if it gets too close
it decelerates, while if it’s falling behind it accelerates to
keep the pace. The model was implemented on top of a
Cellular Automaton navigation algorithm, which discretizes
space into cells and allows agents to move between them. The
authors didn’t specify any particular calibration nor evaluation
technique.

The work of [28] proposes a model that captures both how
agents in the same group influence each other (intra group
dynamics), and how one group can influence the behavior
of other groups (inter groups dynamics). The aforementioned
dynamics are specified by two-dimensional matrices which
also denotes, for every entry, the strength of the influence.
The intra group matrix is used to compute, for each agent, its
distance from the center of the group and the average moving
direction based on other agents that have a non-zero influence.
Each agent will then adjust its trajectory to maintain the group
structure. In a similar way the leader of each group can be
influenced by the behavior of other groups — thus indirectly
influencing its followers. The model is implemented through
Reynolds’s Steering Behaviors with three main behaviors: (i)
moving to a randomly generated destination; (ii) avoiding col-
lision with obstacles; (iii) maintaining the intra-group structure
and the inter-group relationship. The parameters of the model
have been tweaked to discover their connection to different
group shapes and crowd behaviors. Moreover, the model was
employed to simulate a test scenario, and the results have been
compared with predictions of density/flow ratio to evaluate its
performance.

Finally, [29] employ a formal description of gaze direction
to model social group behavior. The idea is that gaze direction
and eye contact are essential features of group communica-
tion, and that pedestrians adjust their position to maintain a
comfortable posture allowing them to socialize. This idea is
modeled adjusting the velocity vector of each agent by a factor
inversely proportional to its gaze direction with respect to
its partners. The model was implemented extending Helbing
social force model [30] with a new term which represents
the ratio between acceleration and gaze rotation. Although
the authors did not calibrate the parameters of the extended
version of the model, they claim that the original one was
already calibrated in previous work [29]. On the other hand
the new model’s accuracy was evaluated by comparison of
walking patterns coming from the model and real-world data.
In particular two kind of analyses were performed: the first one
computed the average angle and distance between each pair
of pedestrians, and studied the related organization patterns.
The second one was an ANCOVA (Analysis of Covariance)
test which confirmed a linear decrease of walking speeds with
increasing group size — as observed in the real data.

It is possible to see that each one of the aforementioned
works proposes a social behavior model which addresses a
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single important aspect of group behavior — essentially one
piece of the overall puzzle: leader influence, group influence
and gaze influence. This is due to the difficulty of creating a
comprehensive simulation model for human behavior, which
has led researchers to split the challenge into various sub-
problems. This divide-and-conquer approach has allowed them
to focus on a single trait of human behavior at a time,
restricting the set of parameters for each experimental design,
and making the challenge more manageable. At the same
time, each of these works is implemented, calibrated and
evaluated using different incompatible techniques. Let us take
as an example the navigation algorithm used by each of the
models. The three social theories modelled there all fall in
the category of group behavior, yet they have different im-
plementation details. Both [27] and [29] base their navigation
implementation on the social force model [30], introducing
in their systems attractive and repulsive forces, which drive
the agents movements. However, the output of the navigation
system of [27] is a new cell in the cellular automaton, whereas
the output in [29] is a new agent position in continuous space.
Thus, combining these two models would require merging two
paradigms for spatial representation. Moreover, adding [28]
to the mix would not be any easier, since it relies on the
third paradigm of continuous velocity updates through classic
Reynolds steering behaviors.

For these reason it would be rather difficult to perform a
fair comparison among these models. And it would be even
more difficult to merge them together to see whether a more
comprehensive and realistic behavior emerges. As a result,
crowd simulation research might not be advancing as quickly
as it could be, if researchers were able pool their resources to
build more sophisticated crowd models.

IV. PROPOSED STEPS

A relevant example of how unification can benefit research
can be observed in the Embodied Conversational Agents
(ECA) community. Researchers produced a unified frame-
work [31] which splits ECA behavior generation into three
independent stages: (i) intent planning, (ii) behavior planning,
and (iii) behavior realization. A Function Markup Language
(FML), describing intent without referring to physical behav-
ior, mediates between the first two stages and a Behavior
Markup Language (BML) describing desired physical real-
ization, mediates between the last two stages. This allowed
researchers to focus on modeling high level intent planning
for ECAs, without worrying about available behaviors, and on
behavior specification, without worrying about their underly-
ing realization or animation capabilities. Among other things,
researchers have employed the framework to create standard
character animation engines, essentially behavior realizers, that
are being shared within the ECA community [32], fostering
collaboration and accelerating progress in the field. A similar
approach could be employed to crowd simulation, by creating
a common framework for bridging the several sub-fields
that are shaping its progress. But since the field of crowd
simulation is somewhat different from that of ECAs, there



will be some unique challenges to tackle. For example, since
crowd simulation deals with a large number of agents, special
attention needs to be paid to performance. In fact, resources
allocated to each agent must be limited, to ensure that the
system can run smoothly. This also highlights the importance
of keeping the performance overhead of a general framework
to a minimum. Another peculiar challenge is tied to crowd
variation. Given the need of simulating a multitude of agents,
they need to be different both in aspect and in behavior,
otherwise they would appear identical and odd.

The idea of a common framework has been in part realized
in Menge, where high level behavior specifications are written
in XML, and then the realization is delegated to the system
which can employ several navigation algorithms and models.
So, one idea would be to build upon Menge to make it
capable of merging crowd models into a unified simulation
of human social behavior. The first step towards this would be
investigating to what extent Menge can support the modelling
of different kinds of crowd simulations. The next goal would
be to extend Menge by integrating state-of-the-art calibration
and evaluation techniques inside the framework. This would
be accomplished by creating interfaces that allow fetching
information about the simulation state where necessary. Then,
it would be possible to create a mechanism which allows to
blend different theories of human behaviors into a unified
model. One possible representation of which would allow
this blending are heat-maps, each one holding information
about a particular aspect of human behavior, in relation to
the the environment. The contents of these data structures
can then be blended and queried by the pedestrian models,
effectively resulting in a behavior dictated by several theories
of human behavior. In some instances, it might not be possible
to blend the behaviors, for example when they’re too different
from each others. A solution in these cases, would be to
implement arbitration techniques which pick the behavior most
appropriate for the context in play. Additionally, the previously
mentioned extensions to the framework will make it possible to
compare the simulation output with reference evaluation data-
sets, to objectively assess the realism of the models. Thus,
as the simulation is carried out, it will be possible to run
calibration algorithms and chose the parameters which draw
the simulation closest to reference data.

V. CONCLUSION

This paper has argued that the field of social crowd simu-
lations sits on four different sub-fields that represent different
dimensions of growth: navigation algorithms, social behavior
theories, calibration techniques, and evaluation techniques.
Research in these sub-fields has produced a range of useful
techniques that can be employed for improving crowd sim-
ulation. At the same time, this abundance of different ap-
proaches has led to fragmentation in crowd simulation research
overall. When crowd simulation researchers experiment with
social behavior theories for replicating human movements,
they usually draw from sociology and psychology studies.
Then, they extend one of the available navigation algorithms
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and create a simulation model. Finally, they may arbitrarily
chose a calibration and evaluation technique to reduce the
gap between the simulation and real-world data. Since these
components vary greatly from one research effort to another, it
is challenging to objectively compare different models — and
it is even more difficult to combine multiple models into a
stronger overall comprehensive model of human behavior.

It is possible that crowd simulation research would advance
more rapidly if experts were more easily able to share and
build on top of each other’s modules and findings. Menge
is one example of a framework which started addressing
this problem, but there are still several important challenges
which need to be tackled in order to support the modeling
of comprehensive human social behavior: (i) it does not offer
any built in solutions to calibrate the model parameters, nor
to evaluate simulation outputs, and (ii) it does not support
the combination of high level behaviors. By leveraging off
existing advances within the Embodied Conversational Agents
community, in particular efforts to create useful abstractions
of human behavior, we may yet be able to bring social crowds
to new levels of realism.
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