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Abstract

In this paper we describe the computational and architectural requirements for
systems which support real-time multimodal interaction with an embodied
conversational character. We argue that the three primary design drivers are real-time
multithreaded entrainment, processing of both interactional and propositional
information, and an approach based on a functional understanding of human face-to-
face conversation. We then present an architecture which meets these requirements
and an initial conversational character that we have developed who is capable of
increasingly sophisticated multimodal input and output in a limited application
domain.

1 Introduction
Research in computational linguistics, multimodal interfaces, computer graphics, and
autonomous agents has led to the development of increasingly sophisticated
autonomous or semi-autonomous virtual humans over the last five years.
Autonomous self-animating characters of this sort are important for use in production
animation, interfaces and computer games.  And increasingly their autonomy comes
from underlying models of behavior and intelligence, rather than simple physical
models of human motion.  Intelligence also increasingly refers not just to the ability
to reason, but also to “social smarts” – the ability to engage a human in an interesting,
relevant conversation with appropriate speech and body behaviors.  Our own research
concentrates on the type of virtual human that has the social and linguistic abilities to
carry on a face-to-face conversation, what we call Embodied Conversational Agents.
Embodied conversational agents may be defined as those that have the same
properties as humans in face-to-face conversation, including:

• The ability to recognize and respond to verbal and non-verbal input
• The ability to generate verbal and non-verbal output.
• The use of conversational functions such as turn taking, feedback, and repair

mechanisms.
• A performance model that allows negotiation of the conversational process,

and contributions of new propositions to the discourse.

Our current work grows out of experience developing two prior systems—"Animated
Conversation" [5] and Ymir [14]. Animated Conversation was the first system to
automatically produce context-appropriate gestures, facial movements and
intonational patterns for animated agents based on deep semantic representations of
information, but did not provide for real-time multimodal interaction with a user. The
"Ymir" system  focused on integrating multimodal input from a human user,
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including gesture, gaze, speech, and intonation, but was only capable of limited
multimodal output in real time in an animated character called "Gandalf".
We are currently developing a conversational character architecture which integrates
the real-time multimodal aspects of Ymir with the deep semantic generation and
multimodal synthesis capability of Animated Conversation. We believe the resulting
system will provide a reactive character  with enough of the nuances of human face-
to-face conversation to make it both intuitive and robust.  We also believe that such a
system provides a strong platform on which to continue development of embodied
conversational agents.

2 Motivation
There are a number of motivations for developing conversational character interfaces,
including:

Intuitiveness. Conversation is an intrinsically human skill that is learned
over years of development and is practiced daily. Conversational interfaces
provide an intuitive paradigm for interaction, since the user is not required to
learn new skills.

Redundancy and Modality Switching: Embodied conversational
interfaces support redundancy and complementarity between input modes.
This allows the user and system to increase reliability by conveying
information in more than one modality, and to increase expressiveness by
using each modality for the type of expression it is most suited to.

The Social Nature of the Interaction. Whether or not computers look
human, people attribute to them human-like properties such as friendliness,
or cooperativeness [8]. An embodied conversational interface can take
advantage of this and prompt the user to naturally engage the computer in
human-like conversation.  If the interface is well-designed to reply to such
conversation, the interaction may be improved.

In this paper we will first present a summary of the salient features of human face-to-
face conversation, and how these drive the design of an architecture which is able to
control an animated character who participates effectively in this kind of interaction.
We then present an architecture that we have been developing to meet these
requirements and describe our first conversational character constructed using the
architecture – Rea.

3 Human Face-to-Face Conversation
Embodied conversation relies on a number of different modalities such as speech,
prosody, hand gestures, facial expression and head movements.  The speaker employs
these channels in parallel, combining modalities as needed for appropriate
elaboration, while the listener simultaneously produces multi-modal feedback and
contentful responses in a similar way.  The speaker and listener accomplish the
switching of roles through a sequence of overlapping turn-taking behaviors where the
parallel nature of the communication channels, and short timescales of the relevant
behaviors provide a seamless transition.
The behaviors that directly contribute to the content delivery or the organization of
the conversation are termed conversational behaviors and are the surface form of the
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exchange.  Typical conversational behaviors include head nods, glances to the side,
raising eyebrows, and speaking.  But it is also important to identify the functions that
these conversational behaviors serve. Typical discourse functions include
conversation initiation, giving and taking turns, giving and requesting feedback, and
breaking away. The same conversational behavior can contribute to the realization of
different discourse functions and the same discourse function can be implemented
using different combinations of conversational behaviors.  For example, head nods
can indicate agreement, or simply attention; and to indicate agreement a listener may
nod or say “uh huh.”
To further clarify the type of roles discourse functions serve, the contribution to the
conversation can be divided into propositional information and interactional
information.  Propositional information corresponds to the content of the conversation
and includes meaningful speech as well as gestures, facial expression, head
movements and intonation used to complement or elaborate upon the speech content.
Interactional information consists of cues that affect the conversational process and
includes a range of nonverbal behaviors as well as regulatory speech such as “huh?"
"Uh-huh".

4 Architectural Requirements
The construction of a computer character which can effectively participate in face-to-
face conversation as described above requires a control architecture which has the
following features:
• Multi-Modal Input and Output – since humans in face-to-face conversation send

and receive information through gesture, intonation, and gaze as well as speech,
the architecture also should support receiving and transmitting this information.

• Real-time –The system must allow the speaker to watch for feedback and turn
requests, while the listener can send these at any time through various modalities.
The architecture should be flexible enough to track these different threads of
communication in ways appropriate to each thread. Different threads have
different response time requirements; some, such as feedback and interruption
occur on a sub-second timescale.  The architecture should reflect this fact by
allowing different processes to concentrate on activities at different timescales.

• Understanding and Synthesis of Propositional and Interactional Information –
Dealing with propositional information requires building a model of user's needs
and knowledge.  Thus the architecture must include both a static domain
knowledge base and a dynamic discourse knowledge base.  Presenting
propositional information requires a planning module to plan how to present
multi-sentence output and manage the order of presentation of interdependent
facts. Understanding interactional information, on the other hand, entails building
a model of the current state of the conversation with respect to conversational
process (who is the current speaker and who is the listener, has the listener
understood the speaker’s contribution, and so on).

• Conversational Function Model – Explicitly representing conversational
functions provides both modularity and a principled way to combine different
modalities.  Functional models influence the architecture because the core
modules of the system operate exclusively on functions (rather than sentences,
for example), while other modules at the edges of the system translate input into
functions, and functions into outputs.  This also produces a symmetric
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architecture because the same functions and modalities are present in both input
and output.

5 Related Work
Other researchers have built embodied multimodal interfaces that add dialogue and
discourse knowledge to produce more natural conversational characters. For example,
Olga is an embodied humanoid agent that allows the user to employ speech, keyboard
and mouse commands to engage in a conversation about microwave ovens [3]. Olga
has a distributed client-server architecture with separate modules for language
processing, interaction management, direct manipulation interface and output
animation, all communicating through a central server.  Olga is event driven, and so
only responds to user input and is unable to initiate output on its own. In addition,
Olga  does not support non-speech audio or computer vision as input modalities.
Olga uses a linear architecture in which data flows from user input to agent output,
passing through all the internal modules in between. Nagao and Takeuchi [8] suggest
a different approach. Their conversational agent is based on the subsumption
architecture by Rodney Brooks [4]. In this case the agent is based on a horizontal
decomposition of task-achieving behavior modules. The modules each compete with
one another to see which behavior is active at a particular moment. Thus there is no
global conversational state or model and the conversational interaction arises from the
interplay between the different behavioral layers. Their agent responds to speech and
gaze information, but coordination of the input analysis and output generation is also
an emergent behavior, so precise control is impossible. The end result is that user
input and agent output are decomposed according to task behaviors rather than
conversational function.
Lester et al. [7] do generate verbal and non-verbal behavior, producing deictic
gestures and choosing referring expressions as a function of the potential ambiguity of
objects referred to, and the proximity of those objects to the animated agent.  This
system is based on an understanding of how reference is achieved to objects in the
physical space around an animated agent, and the utility of deictic gestures in
reducing potential ambiguity of reference.  However, the generation of gestures and
the choice of referring expressions (from a library of voice clips) are accomplished in
two entirely independent (additive) processes, without a description of the interaction
between the two modalities.  Likewise, Rickel and Johnson [10] have their
pedagogical agent move to objects in the virtual world that it inhabits, and then
generate a deictic gesture at the beginning of the verbal explanation that the agent
provides about that object.
Work by the Thalmanns [13] and by Badler [2] has concentrated on smooth and
natural behaviors for virtual humans who exist in a virtual environment, and can
interact and converse with other virtual characters.  The Thalmanns’ work on digital
actors, in particular, has begun to address the challenges of mapping human facial
conversational behaviors onto graphical characters.  The demands of virtual spaces
are quite different, since the embodied character must respond to other characters,
rather than real humans.  However, the issues involved in generating appropriate and
realistic conversational behaviors are similar.
Our current approach derives from previous work by a student in our research group
on the Ymir architecture [14]. In this work the main emphasis was the development of
a multi-layer multimodal architecture that could support fluid face-to-face dialogue
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between a human and graphical agent. The agent, Gandalf, recognized and displayed
interactional information such as gaze and simple gesture and also produced
propositional information, in the form of canned speech events. In this way it was
able to perceive and generate turn-taking and backchannel behaviors that lead to a
very natural conversational interaction. This work provided a good first example of
how verbal and non-verbal function might be paired in a conversational multimodal
interface.
However, Gandalf had limited ability to recognize and generate propositional
information, such as providing correct intonation for speech emphasis on speech
output, or a gesture co-occurring with speech. In contrast, “Animated Conversation”
[5] was a system that automatically generated context-appropriate gestures, facial
movements and intonational patterns. In this case the domain was conversation
between two artificial agents and the emphasis was on the production of non-verbal
propositional behaviors that emphasized and reinforced the content of speech.  The
system did not run in real-time and since there was no interaction with a real user, the
interactional information was very limited.
The approach we use combines lessons learned from both the Gandalf and Animated
Conversation projects. In the next section we present a conversational function based
architecture for developing embodied conversational interfaces. Following that we
describe Rea, the first conversational humanoid based on this architecture.

6 Conversational Humanoid Architecture
Based on our previous experience with Animated Conversation and Ymir we have
been developing an architecture that handles both real-time response to interactional
cues and deep semantic understanding and generation of multimodal inputs and
outputs1. At a high level, our architecture is partitioned into: an Input Manager, which
is responsible for collecting inputs across modalities; an Action Scheduler,
responsible for synchronizing output actions across modalities; and components
which handle the real-time interactional functions and longer-term deliberative
responses such as content understanding and synthesis. The full breakdown of the
architecture is shown in Figure 1. The modules communicate with each other using
KQML, a speech-act based inter-agent communication protocol, which serves to
make the system very modular and extensible. Each of the modules in the architecture
are described next.

6.1 Modules

6.1.1 Input Manager
The Input Manager obtains data from the various input devices, converts it into a
form usable by other modules in the system, and routes the results to the
Understanding Module. Interactional information is also forwarded directly to the
Reaction Module to minimize system response time.

                                                          
1 This architecture has been developed in conjunction with the Conversational Characters

project at Fuji-Xerox Palo Alto Laboratory.
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The Input Manager will typically receive information from devices which provide
speech text, user gesture, location, and gaze information, and other modalities.  In all
cases the features sent to the Input Manager are time stamped with start and end times
in milliseconds.  In our current implementation, the Input Manager also bundles co-
temporal input events into aggregate semantic representations (e.g., a user utterance
and accompanying gestures) for the Understanding Module to process.

6.1.2 Understanding Module
The Understanding Module is responsible for fusing all input modalities into a
coherent understanding of what the user is doing. The Understanding Module receives
inputs from the Input Manager and can access knowledge about the application
domain (Static Knowledge Base) and the current discourse context (Discourse Model)
to help it interpret the inputs. For example, if the user gestures while the character is
speaking it is interpreted as a wanting turn function, whereas if a gesture is detected
while the user is speaking it is taken as a speech-accompanying gesture.

6.1.3 Reaction Module
The Reaction Module is responsible for the “action selection” component of the
architecture, which determines what the character should be doing at each moment in
time. The Reaction Module receives asynchronous updates from the Input Manager
and Understanding Module, and uses information about the domain (Static
Knowledge Base) and current Discourse State to determine the action to perform.
The Reaction Module currently responds to interactional cues based on a set of states.
The system starts up in the NotPresent state and remains there until a user is detected,
at which time it transitions to Present. Once the user and the character have
exchanged greetings (or other similar cues) the system transitions into turn-taking,
represented by UserTurn and ReaTurn states. The Conclude state is used to handle
user interruptions of the character, allowing it to continue to the end of a phrase
boundary before giving the turn back to the user. The Interrupt state is entered if the
system detects that the user has turned away. We anticipate adding more states as we
begin to explore multi-sentential, mixed-initiative dialog.

6.1.4 Response Planner Module
The Response Planner is responsible for formulating sequences of actions, some or all
of which will need to be executed during future execution cycles, to carry out desired
communicative or task goals.

Fig. 1. Detailed Conversational Character
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6.1.5 Generation Module
The Generation Module is responsible for realizing discourse functions output from
the Reaction Module by producing a set of coordinated primitive actions (such as
speech or gesture generation, or facial expression), sending the actions to the Action
Scheduler for performance, and monitoring their execution.

6.1.6 Action Scheduling Module
The Action Scheduler is the “motor controller” for the character, responsible for
coordinating output actions at the lowest level. It takes a set of atomic modality-
specific commands and executes them in a synchronized way. This is accomplished
through the use of event conditions specified on each output action which define
when the action should be executed.

6.2 Fulfillment of Architectural Requirements
We feel that the architecture described meets all of the requirements for an embodied
conversational character that can participate face-to-face conversation with a human.
It is capable of reacting to and producing inputs and outputs across multiple
modalities by mapping specific features of these modalities into conversational
functions and using a uniform knowledge representation format (KQML) throughout
the system. It can run in real-time, by providing immediate responses to interactional
cues, and decoupling  processes such as content understanding and synthesis, which
can take seconds of response time. The architecture is able to work with both
interactional and propositional information, in fact most KQML frames used within
our implementation have slots for both kinds of input interpretations or output
specifications present. The presence of the Understanding and Generation Modules in
the architecture are specifically to enable the separation of channel-specific features
from conversational functions, allowing the Reaction and Response Planning
Modules to deal entirely at the functional level of abstraction. Finally, the use of a
common KQML representation throughout, coupled with the disciplined use of
functional descriptors allows the system to be very extensible with respect to input
and output modalities, and modular with respect to plugging in new modules which
implement alternative theories of discourse.

7 Implementation
Rea (“Real Estate Agent”) is our first instantiation of the architecture described
above. Rea is a computer generated humanoid that has a fully articulated graphical
body, can sense the user passively through cameras and audio input, and is capable of
speech, facial display, and gestural output. The system currently consists of a large
projection screen on which Rea is displayed and which the user stands in front of.
Two cameras mounted on top of the projection screen track the user’s head and hand
positions in space. Users wear a microphone for capturing speech input. A single SGI
Octane computer runs the graphics and conversation engine of Rea, while several
other computers manage the speech recognition and generation and image processing
(Figure 2).  The system is implemented in C++ and CLIPS, a rule-based expert
system programming language.
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7.1 A Sample Interaction
Rea’s domain of expertise is real estate and she acts as a real estate agent showing
users the features of various models of houses that appear on-screen behind it. The
following is a excerpt from a sample interaction:

Lee approaches the projection screen. Rea is
currently turned side on and is idly gazing
about. As the Lee moves within range of the
cameras, Rea turns to face him and says
“Hello, my name is Rea, what can I do for
you?” “Hi, I'm Lee, I'm looking for a place
near MIT.”  Rea replies “I have a house in
Somerville" after briefly looking up and away
while pondering. “Sounds good, tell me about
the house".  A picture of a house appears on-
screen behind Rea.“This is a nice Victorian
with a large garden” Rea says while
producing a curved gesture, indicating that
the garden surrounds the house. Rea
continues “It has two bedrooms and a large

kitchen ...”  Lee raises his hands into space, indicating  his intention to take the turn, so Rea
yields the turn to Lee.  “Tell me about the bedrooms,” Lee says. An image showing the master
bedroom appears.“The master bedroom is furnished with a four poster bed and…“  "Where is
the bathroom?". Lee says ,interrupting Rea in a mid-sentence. "It is next to the bedroom" Rea
replies, placing her hands close to each other to show the adjacency arrangement.  And the
house tour continues…
Rea is able to describe the features of a house while also responding to the users’
verbal and non-verbal input. When the user makes cues typically associated with turn
taking behavior such as gesturing, Rea allows herself to be interrupted, and then takes
the turn again when she is able. She is able to initiate conversational repair when she
misunderstands what the user says, and can generate combined voice and gestural
output.  Rea’s speech and gesture output is generated in real-time.  The descriptions
of the houses that she shows, along with the gestures that she uses to indicate and
describe those houses are generated using the SPUD natural language generation
engine [12], modified so as to also generate natural gesture.

7.2 Input Sensors
The input manager currently receives three types of input:
• Gesture Input: STIVE vision software[1] uses two video cameras to track flesh

color and produce 3D position and orientation of the head and hands at 10 to 15
updates per second.

• Audio Input: A simple audio processing routine detects the onset, pauses, and
cessation of speech.

• Grammar Based Speech Recognition: Speech is also piped to a PC running IBM's
ViaVoice98, which returns text from a set of phrases defined by a grammar.

Data sent to the Input Manager is time stamped with start and end times in
milliseconds. The various computers are synchronized to within a few milliseconds of
each other using NTP (Network Time Protocol) clients. This synchronization is key
for associating verbal and nonverbal behaviors.  Low level gesture and audio
detection events are sent to the reaction module immediately. These events are also

Fig. 2. User interacting with Rea
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stored in a buffer so that when recognized speech arrives a high-level multimodal
KQML frame can be created containing mixed speech, audio and gesture events. This
is sent to the understanding module for interpretation.

7.3 Output System
The multi-modal and real-time requirements call for a careful design of the output
system.  In particular, a conversational character needs a perfect coordination between
speech and nonverbal behavior such as gesturing.  The slightest mismatch will not
only look unnatural, but could in fact convey something different from what was
intended.  The modularity and extensibility requirement has enforced well defined
interfaces between the various components of the output system and has inspired the
implementation of a plug-in style motor skill mechanism.
The output system consists of three main components: a Scheduling Component, an
Animation Component, and a Rendering Component.  The Scheduler receives
requests for the activation of various behaviors from the Generation Module.  The
requests include interdependencies among the behaviors, such as requirements about
one behavior finishing before another one starts.  The Scheduler is therefore
responsible for successfully sequencing pending behaviors.  The Animator assigns a
behavior ready to be executed to a motor skill that then becomes responsible for
animating the joints of the model by communicating with the Renderer (Figure 3).

7.3.1 Scheduler
A behavior description, along with its preconditions and manner of execution are sent
to the Scheduler in a KQML message.  The Generation Module typically sends the
Scheduler a set of behaviors that together, when properly triggered, are meant to carry
out a single function, such as an invitation to start a conversation.  The Scheduler can
be instructed to notify the Generation Module through KQML callback messages
when certain events occur, such as completion of an output behavior sequence.
Execution of behavior in the Scheduler is event-driven because it is often difficult to
accurately predict output behavior execution timings, making it impossible to plan out
completely synchronized execution sequences in advance. In addition, some
behaviors can produce meaningful events while they are being executed (e.g., the
speech synthesis behavior can produce an event after each word is produced), and

Action Scheduler
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Fig. 3. The three layers of the Output System: Scheduling, Animation and Rendering.
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thus allow other behaviors to be started or stopped when these events occur. Figure 4
shows an example of an event-driven plan executed by the Action Scheduler with
dependencies among the individual behaviors.

The specification sent to the Action Scheduler contains a description of each
individual behavior to be executed (a ":content" clause), along with a precondition for
the start of the behavior (a ":when" clause)  and an optional symbolic label (":id")
which can be used in the preconditions of other behaviors. Figure 5 shows the KQML
input specification for the plan shown in Figure 4.

The Action Scheduler works by managing a set of primitive behavior objects, each of
which represents a set of animations (e.g., "right arm gestures"). When a behavior is
commanded to start it first acquires the body Degrees Of Freedom (DOF) that it
requires, such as the set of the right arm and hand joints. It then goes into a starting
phase in which it can perform initialization, such as moving the arm into a ready
position. Most of the behavior's actions are carried out in the update phase, which
ends when the behavior reaches a natural stopping point, when it is explicitly
commanded to stop, or when some other behavior preempts it by grabbing one or

1. Look away
2. Look at user
3. “I have a condo.”
4. Ready right hand.
5. Beat. Peak=‘a condo’.
6. “It is in a building in Boston.”
7. High gesture. Peak=‘a building’
8. Relax right hand

Time
∆

∆

Indicates precondition for event

∆
Indicates precondition plus delay for event

Fig. 4. Example of synchronized speech and gesture output by the Action Scheduler.

[(action :id H_AWAY :when immediate
:content (headlook :cmd away :object user))

(action :id H_AT :when (offset_after :event H_AWAY.END :time 00:01.50)
:content (headlook :cmd towards :object user))

(action :id S_CONDO :when (after :event H_AT.END)
:content (speak :content “I have a condo.”))

(action :when (after :event S_CONDO.START)
:content (rightgesture :cmd ready))

(action  :when (after :event S_CONDO.WORD3)
:content (rightgesture :cmd beat))

(action :id S_BLDG :when (offset_after :event S_COND.END :time 00:01.00)
:content (speak :content “It is in a building in Boston.”))

(action  :when (after :event S_BLDG.WORD4)
:content (rightgesture :cmd compose :trajectory vertup :hand bend))

(action  :when (after :event S_BLDG.END)
:content (rightgesture :cmd relax))]

Fig. 5. Action Scheduler KQML input specification for the plan shown in Figure 6.
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more of its DOFs. Before returning to idle, a behavior can go through an ending phase
in which it can perform any wrapup operations needed, such as returning the arm to
its rest position.

7.3.2 Animator
When the Scheduler has a non-verbal behavior ready for execution, it passes its
description over to the Animator.  Actions not involving the character's body are
executed directly, for example verbal behavior is sent to the speech synthesizer.  The
Animator checks with the Motor Skill Manager to see if a motor skill capable of
handling the request has registered with it.  The task of animating joints of the model
was broken up into separate motor skills in part because the different skills called for
different methods of animation.  Motor skills range from straight forward ones, such
as those executing a single head nod, to more elaborate ones such as those employing
Inverse Kinematics for pointing at objects or playing key-frame animation.  When a
motor skill is activated, it asks the Arbitrator for the body DOFs it needs to modify.
If two skills ask for the same DOF, the one with the higher priority captures it.
Depending on the implementation of particular skills, the losing skill can keep trying
to capture the DOF.  This feature is useful for instances where a continuous behavior
is momentarily interrupted by an instantaneous one, such as when the character is
tracking the user with it's gaze, and gets asked to glance up and away (higher
priority).  When the glance is completed, the tracking automatically resumes.  The
Arbitrator is responsible for keeping track of DOFs in use and allocating them to
skills that request them.  All skills can access information about the environment,
including virtual objects and the perceived user position through a shared World.
Motor skills such as for controlling facing can therefore accept names of objects as
parameters.

7.3.3 Renderer
The rendering engine is abstracted away from the animator by introducing a
BodyModel layer that essentially maps a DOF name to the corresponding model
transformation.  We have implemented a BodyModel that interfaces with a VRML
scene graph rendered using OpenInventor from TGS.  The naming of the character's
DOFs follows the H-Anim VRML Humanoid Specification for compatibility [11].

8 Conclusion
In this paper we have argued that a new approach to intelligence and autonomy is
needed in the design of virtual humans and other autonomous animated characters.
This approach goes beyond the insights about reasoning offered by classical AI, and
beyond the focus on believability advocated by classical graphical animation.  In this
new approach, autonomy comes from underlying models of social and linguistic
intelligence that allow our autonomous animated agents to be able to carry on realistic
conversations with humans, using both speech and other visual modalities.  We argue
that the nature of human face-to-face communication imposes strong requirements on
the design of embodied conversational characters, and have described how our
architecture satisfies these requirements.
We demonstrated our approach with the Rea system. Increasingly capable of making
an intelligent content-oriented – or propositional – contribution to the conversation,
Rea is also sensitive to the regulatory – or interactional -- function of verbal and non-
verbal conversational behaviors, and is capable of producing regulatory behaviors to
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improve the interaction by helping the user remain aware of the state of the
conversation. Rea is an embodied conversational agent who can hold up her end of
the interaction.

9 Future Work
Implementing multimodal embodied conversational characters is a very complex
undertaking, and we have an extensive research agenda of conversational
competencies to add or improve on. Finally, the least reliable components of the
system are the individual modality feature detectors, and we are continuing to refine
and extend these to provide user gaze direction, facial expression, and gestural form.
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