
D. Schuler (Ed.): Online Communities and Social Comput., HCII 2007, LNCS 4564, pp. 192–201, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Social Puppets: Towards Modular Social Animation for
Agents and Avatars

Hannes Vilhjalmsson1, Chirag Merchant2, and Prasan Samtani3

1 CADIA, Reykjavík University
Kringlan 1, IS-103 Reykajvík, Iceland

hannes@ru.is
2 USC Institute for Creative Technologies

13274 Fiji Way, Marina del Rey, CA 90292, USA
merchant@ict.usc.edu

3 USC Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292, USA

samtani@isi.edu

Abstract. State-of-the-art computer graphics can give autonomous agents a
compelling appearance as animated virtual characters. Typically the agents are
directly responsible for controlling their graphical representation, but this places
too much burden on the agents that already deal with difficult high-level tasks
such as dialog planning. This paper presents work, done in the context of an
interactive language and culture training system, on a new kind of engine that
fits between the high level cognitive agent models and the animated graphics
that represent them. This is a social engine that generates socially appropriate
nonverbal behavior based on rules reflecting social norms. Similar to modular
physics engines, the social engine introduces a re-usable component that can
heighten believability of animated agents in games and simulations with
relatively little effort.

1 Introduction

Autonomous agents that interact with humans are found in applications ranging from
health intervention to computer games. It is important for many of these applications
to create a sense of face-to-face interaction with the agents and therefore they have
benefited from modern graphics hardware that is capable of rendering a realistic
physical appearance in real-time. After the agent software processes user input and
generates agent responses, it typically calls a graphics engine to deliver speech and
animation through an articulated face or body. This may suffice in a relatively
constrained dialog environment, but take this into a dynamic 3D environment, such as
the interactive world of games, and the physical delivery of spoken responses
becomes more complex.

How does the animated body know that it is within hearing distance of its addressee
before speaking? How does it visually indicate to those around it that it has something
to say? How does it perform a specific co-verbal gesture when the spatial configuration
of participants changes? How does it know it is not speaking out of turn? It is hard to
avoid awkward social moments when the division between mind and body is absolute,

 Social Puppets: Towards Modular Social Animation for Agents and Avatars 193

such as is the case when agent software, oblivious to physical surroundings, hands
responses off to a graphics engine that is oblivious to the social situation.

It is possible to extend the original autonomous agent model to deal with all of
these physical factors, but that places a lot of burden on a process that already has its
hands full with coming up with the next thing to say. Besides, we should be able to
generalize and re-use a model that carries out nonverbal behavior according to social
norms. They are called norms for a reason.

In fact, this is similar to the situation where we have an agent that we want to
behave realistically inside a world governed by Newtonian physics while also
pursuing its high level goals. It would make for poor portability if we needed to re-
implement our laws of physics every time we changed our agent models. Similar to
attaching skeletal geometry to a “rag-doll” object inside a specialized physics engine
and giving the physical simulation full control over its joints when the laws of physics
need to apply, one can imaging plugging an agent into a social structure that ensures
that the rules of social nonverbal behavior are observed as the agent pursues its goals
in the world.

This paper describes work that was done as part of developing a system for rapidly
teaching new languages and culture through an engaging social game environment.
This overall system will be described in section 3 after the following review of related
work. The role and implementation of the novel Social Puppets module will be
discussed in section 4, followed by future work and conclusions.

2 Related Work

Agents simulating groups of people interacting with each other with or without a
human in the loop, typically appear more believable when they act according to
coherent social or psychological models, inspired by scientific theory and empirical
data, than when they act in ad-hoc or random ways, even if their visual appearance is
photo realistic [1], [13], [23]. This has encouraged researchers to build computational
models and incorporate them into their agents’ decision process. Implemented
models include group dynamics [13], social role awareness [14], social relationship
[2], politeness [24], emotion [7], [12] and personality, which tends to factor into many
of these other models.

While all of the models mentioned address believability, they focus on the
computation of the abstract inner state of agents and then how that state reveals itself
through a choice of verbal action or perhaps facial expression. The nonverbal
coordination of the social situation is often a secondary concern, which can leave
these rich minds stranded in an awkwardly stiff or uncoordinated body.

Embodied Conversational Agents (ECA) [3] specifically address the nonverbal
aspect of social conduct. This research generally draws from the study of human
face-to-face conversation and applies rules that relate abstract description of
communicative intent to observable physical behavior, which is realized through real-
time multi-modal behavior production. Early ECAs, such as Gandalf [20] and Rea
[4], demonstrated the importance of separating content generation and interaction
control. It was argued that how and what an agent chooses to say in a given situation
is highly domain specific whereas the ability to deliver the chosen content through
face-to-face interaction with others is a broad skill and re-usable across domains.

194 H. Vilhjalmsson, C. Merchant, and P. Samtani

Another important idea that came out of early ECA research was to keep the planning
of communicative intent and planning of its surface form as separate stages in the
production process. Wide adoption of this view and interest in sharing system
components has lead to the formalization of a multi-modal behavior generation
framework called SAIBA [9]. This framework defines an interface at the level of
communicative intent, called Function Markup Language (FML) and another
interface at the level of form description, called Behavior Markup Language (BML).

Primarily used as interface agents, Embodied Conversational Agents have mostly
been built for one-on-one conversations with users in a relatively fixed physical
setting. When moving into a dynamic 3D game environment, more behaviors and
more complex patterns of interaction need to be considered, for example to deal with
a larger numbers of participants and longer locomotion distances. Research into the
generation of believable communicative behavior in multi-party settings is growing,
but has for the most part focused on one or two kinds of behavior at a time such as
posture or gaze [6], [15].

Another kind of research into the generation of multi-party social behavior deals
with crowds, which has for a long time been at a level of detail that is too low for
close quarters environments. However, recent work on autonomous pedestrians
suggests the implementation of a coupling between cognitive control and reactive
behavior control at the individual level to attain a higher level of realism in social
locomotion [17] and work has started on simulating believable smaller sized crowds
with a collection of rules based on statistical data on observed behavior in human
gatherings [11]. While the detail in this work is not high enough to support face-to-
face interaction, the gap that has existed between the deep modeling of a single
individual in a very limited environment and the broader modeling of a large number
of individuals in a complex environment is getting smaller. This trend is perhaps
driven by the requirements of densely populated but highly interactive game worlds
that are now possible.

It is important to build tools and flexible system frameworks to bring models of
behavior into real-world applications and to speed up the development of new models
and environments for testing. Such tools both exist for the more abstract socio-
psychological models [16], [18] and for the rule-based generation of nonverbal
behavior [5], [10]. The work presented here on Social Puppets, a special tool for game
environments, is very much influenced by the latter, with roots in the Spark
framework for animating online avatars [22] and its core engine which itself was
based on the BEAT nonverbal behavior toolkit [5]. The Social Puppets approach
aims to accommodate any kind of higher level agent models and lower level
animation systems by supplying a clear behavior interface. The approach extends
previous work by starting to address both the depth of face-to-face conversation and
the existence of an extended 3D social game environment. The Social Puppets have
been realized in the context of a real-world application which will be discussed next.

3 The Language and Culture Training System

The work presented in this paper was done as an important component of the DARPA
funded Tactical Language and Culture Training System (TLCTS) which teaches

 Social Puppets: Towards Modular Social Animation for Agents and Avatars 195

adults basic communication skills in a foreign language and culture [8]. The overall
system combines several advanced technologies including speech recognition,
dynamic learner modeling, adaptive feedback, interactive autonomous agents and a
3D game environment. Learners pick up new communication skills in a multimedia
tutoring environment and get to practice them by switching to a game environment
where they carry out related tasks within an interactive story. Advancing through the
story relies on building trust with automated characters by speaking with them in their
language and behaving in a culturally sensitive manner. Modules for Levantine
Arabic, Iraqi Arabic and Pashto were developed at ISI and other languages and
cultures are forthcoming from Alelo Inc., a spin-off that licensed the technology for
commercialization.

The simulated social encounters in the game and the engaging story give learners a
strong context for practicing the new language as well as learning about the culture.
Nonverbal behaviors play an important role in any face-to-face interaction and are
therefore a very important part of any language and culture training. From the
inception of the project, it was clear that an accurate rendition of nonverbal behavior
was essential.

A screenshot from the game in an early Pashto version of TLCTS is shown in
Fig. 1. The learner, represented by an avatar (1), has just entered an Afghan village
and is greeted by a group of children. Behind the learner stands a native guide who
can assist if the learner stumbles (4). To interact with the children, the learner starts
by crouching down, taking of his shades, to make eye-contact, and then greeting the
children. The learner accomplishes the greeting by facing the children, selecting a
hand-over-heart gesture with the mouse and speaking into a microphone (2). The way
that the learner conducts himself affects the agents that control the characters of the
children, possibly resulting in increased or decreased trust as indicated by an animated
plus or a minus sign, and the movement of an accumulative trust bar underneath each
character’s portrait (3).

The TLCTS is a modular system with many well defined interfaces, several of
which contribute to the game environment experience. For a description of all
modules and the interaction between them, see [21]. The graphics are rendered in the
Virtual Culture (VC) game engine from Alelo Inc., a modified version of the Unreal
Engine from Epic Games. The VC engine has a character animation interface that
supports procedural motor skills for communication, such as gaze control, facial
expressions, pointing and detailed body locomotion and orientation.

Considerable work went into adding this repertoire of interpersonal behavior into
the game engine because the original Unreal games were only concerned with combat
related behavior. The game engine is also responsible for rendering and maintaining
the graphical environment that serves as the stage for the interactive stories.

While the game engine carries out the final low level realization of character
action, the decision about how a character responds to the learner’s input, is taken at a
much higher level in what is called the agent code. The agents, as well as the rest of
the high-level processing in TLCTS, are written in Python and plug right into a
flexible framework that supports message routing between components. In fact, two
very different implementations of the agent code were built, and switching between
them is quite trivial. The former implementation is a full-blown multi-agent system
with deep social reasoning that includes theory of mind. Originally developed as a

196 H. Vilhjalmsson, C. Merchant, and P. Samtani

Fig. 1. A scene from the Pashto version of TLCTS where the learner has encountered a group
of children in an Afghan village

general social simulation tool called PsychSim, a special version called Thespian was
created for TLCTS. Thespian addresses two important needs that arise in an
interactive drama setting. The first being able to give the agents a pre-written story
script as a guideline for their behavior through a process called fitting [19] and the
second being able to enforce common social norms that govern conversation,
including multi-party conversation [18]. The second agent implementation is based on
finite state machines, and was created as a less computationally intensive alternative
to the first one to improve agent response time at the cost of reduced reasoning power
and dynamism. Both types of agent modules receive the learner input in the form of
speech acts and return agent responses also in the form of speech acts.

The deliberation at the level of speech acts does not involve any detailed
coordination of nonverbal behavior or in fact any interaction with the simulated
physical environment. This is not necessarily a fundamental limitation of the
underlying agent technologies, but has more to do with the fact that they were
authored around mental models rather than physical ones. Not only does this leave
a gap between the decisions that the agents make and their manifestation in the
environment, but also begs the question what happens while the agents are not
producing speech acts? This is where the Social Puppets come in. They ground the
agents in their physical bodies within the environment as the next section will
explain.

 Social Puppets: Towards Modular Social Animation for Agents and Avatars 197

4 The Social Puppets

Instead of having the agent code interface directly with the game engine, each agent
interfaces with a Social Puppet (see Fig. 2). While each puppet represents an
individual, all the puppets belong to a single social environment overseen by a social
engine or a manager that enforces social order. This social engine communicates with
the game engine through an executive module that takes care of executing behavior
scripts once they have been generated by the puppets.

To use Social Puppets, a system first needs to instantiate a Social Puppets
Manager. Through the manager, individual Social Puppets are created and named, one
for each agent and one for the human learner. The Manager keeps track of all the
puppets, routes special communicative messages between them and dynamically
organizes them into interaction groups. The manager needs to receive updates about
learner input and a few perceptual updates from the game engine, but is otherwise
self-contained with respect to generating appropriate reactive nonverbal behavior for
all the puppets. The agent code can have as much control over its corresponding
puppet as it wants, but generally it only interfaces with it when it wants to speak or
when it wants to change a context parameter (see below).

While running, the manager turns learner input and character perceptual data, into
meaningful communicative events described in an early version of the Function
Markup Language (FML). These events are then routed to any puppets that are

Social Puppet

approach
recognize

initiate/invite
requestturn
acceptturn

taketurn
giveturn

 breakaway

speechact

approach
recognize/avoid
initiate/invite
attend/listen
requestturn
acceptturn
keepturn
taketurn
giveturn
breakaway
speechact

gaze
head
 -nod,
 -shake...
face
 -browraise...
body
 -orient,
 -pose...
gesture
speech

Agent Code
Higher Level Planning / Dialog Planning

Context: activity, configuration, attitude

BML to script
executor and
game engine

FML Reaction BML Reaction

FML to
Social Manager

(produced)

FML from
Social Manager

(perceived)

Mapping
rules

Fig. 2. The Social Puppet is coupled with an autonomous agent and takes care of adding non-
verbal behavior, both in reaction to external communicative events and when the agent itself
wishes to communicate (dashed arrows are example mappings)

198 H. Vilhjalmsson, C. Merchant, and P. Samtani

possibly affected by the event, based mainly on how they are grouped. Everyone in a
group gets to observe the same events, even if the event does not directly target them.
For example, if the learner initiates contact with one member of a group, the other
group members react.

When a puppet receives an FML event, it generates a communicative reaction,
described at the same abstract FML level. The incoming event typically maps directly
to a reaction such as accepting a conversation turn that has been given to the puppet.
However, in some cases contextual parameters stored as a state vector in each puppet,
have to be consulted. For example, a certain attitude can cause a puppet not to
respond well to the approach of another puppet.

In the Pashto system, the learner might choose to approach an Afghan woman
standing by herself near a well. As the learner approaches the woman, her puppet
receives an approach message from the learner’s puppet. The woman’s puppet finds
that its attitude parameter is negative and therefore selects avoidance as a reaction
rather than recognition (see Fig. 3). The attitude value had been set as part of
initializing the scene with proper cultural information. In this case it’s part of Pashtun
culture to condemn attempts from strangers, especially men, to interact with local
women.

Once a puppet has chosen the appropriate reaction at the level of communicative
intent, it now has to plan nonverbal behaviors that support this intent. There are
several different ways to accomplish this. Mostly this is done as programmed
procedures for each type of communicative event, and as a function of the contextual
parameters. These parameters currently describe three dimensions of puppet state:
Physical configuration (such as SITTING or STANDING), primary activity (such as
READING or SOCIAIZING) and social attitude (such as HOSTILE or FRIENDLY).
Other state parameters are possible, but so far this set has been found to be valuable in
picking the most appropriate nonverbal behavior in TLCTS. The programmed
procedures provide maximum flexibility for implementing relatively complex models
of human social behavior.

For a more direct mapping, each puppet also keeps a four-dimensional behavior
lookup table. The index into this table is the intent and the three current context
values (any of which can be a “don’t care” value) and what is returned is the best
matching behavior description or animation name, as well as a new state vector and
associated transition animation if needed (such as “standing up” if the puppet was in a
“sitting” configuration).

The third way to generate behavior, and one that has not been fully exploited yet, is
to use a file that contains FML to BML mapping rules built with a new visual
application called “BCBM Rule Builder” [25]. These rules can tie together any FML
representation with any contextual XML representation (defined by the author) to
produce any nonverbal behavior performance described with a block of BML. The
application allows the author to test the rules on a BML compliant character
animation engine to explore in real-time the triggered nonverbal behavior, and
therefore can greatly speed up the authoring process. A prototype with this
functionality is already in Social Puppets.

 Social Puppets: Towards Modular Social Animation for Agents and Avatars 199

Fig. 3. Examples of communicative intent turning into visible behavior in the Social Puppets.
Avoidance (Left). Speaking and listening (Right).

After the puppet is done producing a behavior description in the form of a BML-
level script, it is passed on to an execution module which in turn feeds the game
engine with individual behavior commands that drive the character animation. The
puppet’s intent is also broadcast to any other relevant puppets through the manager to
continue the sequence of events.

In some cases, the manager itself can choose to generate a sequence of events
according to a particular behavior model. For example, the manager in Tactical
Pashto implements the turn-taking model from [22] where it is assumed that the turn
is returned to whomever spoke before the current speaker if no explicit turn action is
taken. Because the manager keeps track of all puppets and their groups, it is a good
place for implementing top-down behavior models for group behavior, whereas the
puppets themselves are a better place for bottom-up rules that are meant to result in
some emergent social order.

Speech acts are a special kind of communicative event in the social engine. These
either come from the learner or the agent code as mentioned above. The pathway for
these events is different from other communicative events. Speech acts from the
learner trigger turn-taking events in the social puppets, including the puppet that
represents the learner, but the acts are also routed to the agents so they can generate a
response. The response from an agent is a speech act that gets passed through the
agent’s puppet, generating nonverbal behaviors, before finally coming out in the
environment as a multi-modal performance.

5 Conclusions and Future Work

The Social Puppets have not been formally evaluated as a component by themselves,
but the rigorous testing and subsequent release of the overall TLCTS to thousands of
end users speaks well of the module’s robustness, and the warm reception, of its
quality of output. Furthermore, the module visibly improved development time, not
least because it provided a new middle-level for scripting prototype characters that

200 H. Vilhjalmsson, C. Merchant, and P. Samtani

didn’t require any agent code to be present. Currently, one of the biggest problems
with the approach is that while channels for communicative events and behaviors are
well defined, other required information, such as perceptual data and contextual
parameters, hasn’t lent itself to clear-cut modularization and therefore some ad-hoc
connections still remain. Future work will involve cleaning this up, extending the
range of communicative intent and behaviors, and including dynamic locomotion
planning using social anchor points such as formations and environmental features.

Acknowledgements. This project was a part of the DARWARS Training Superiority
Program of the Defense Advanced Research Projects Agency and was conducted
while the first author was working at USC/ISI. The authors wish to acknowledge the
contributions of the members of the Tactical Language team and the BCBM team at
Micro Analysis and Design. Many thanks to W. Lewis Johnson, Andre Valente and
Stacy Marsella for their leadership and support.

References

1. Bailenson, J., Blascovich, J.: Avatars. In: Bainbridge, W.S. (ed.) Encyclopedia of Human-
Computer Interaction. Berkshire Publishing Group, pp. 64–68 (2004)

2. Cassell, J., Bickmore, T.: Negotiated Collusion: Modeling Social Language and its
Relationship Effects in Intelligent Agents. In: User Modeling and User-Adapted
Interaction, vol. 13, pp. 89–132. Kluwer Academic Publishers, Boston (2003)

3. Cassell, J., Sullivan, J., Prevost, S., et al. (eds.): Embodied conversational agents. MIT
Press, Cambridge (2000)

4. Cassell, J., Bickmore, T., Billinghurst, M., et al.: Embodiment in Conversational
Interfaces: Rea. CHI, pp. 520–527. ACM Press, New York (1999)

5. Cassell, J., Vilhjalmsson, H., Bickmore, T.: BEAT: The Behavior Expression Animation
Toolkit. SIGGRAPH, pp. 477–486. ACM Press, New York (2001)

6. Gillies, M., Ballin, D.: A Model of Interpersonal Attitude and Posture Generation. In:
Intelligent Virtual Agents, Springer-Verlag, Heidelberg (2003)

7. Gratch, J., Stacy, M.: Evaluating the Modeling and use of Emotion in Virtual Humans. In:
Autonomous Agents and Multi-Agent Systems, ACM Press, New York (2004)

8. Johnson, W.L., Marsella, S., Vilhjalmsson, H.: The DARWARS Tactical Language
Training System. The Interservice/Industry Training, Simulation and Education
Conference, SSA (2004)

9. Kopp, S., Krenn, B., Marsella, S., et al.: Towards a Common Framework for Multimodal
Generation in ECAs: The Behavior Markup Language. In: Gratch, J., Young, M., Aylett,
R., Ballin, D., Olivier, P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, Springer, Heidelberg
(2006)

10. Lee, J., Marsella, S.: Nonverbal Behavior Generator for Embodied Conversational Agents.
In: Gratch, J., Young, M., Aylett, R., Ballin, D., Olivier, P. (eds.) IVA 2006. LNCS
(LNAI), vol. 4133, pp. 243–255. Springer, Heidelberg (2006)

11. Patel, J., Parker, R., Traum, D.: Simulation of Small Group Discussions for Middle Level
of Detail Crowds. Army Science Conference (2004)

12. Pelachaud, C., Bilvi, M.: Computational model of believable conversational agents. In:
Huget, M. (ed.) Communication in MAS: Background, Current Trends and Future,
Springer-Verlag, Heidelberg (2003)

 Social Puppets: Towards Modular Social Animation for Agents and Avatars 201

13. Prada, R., Paiva, A.: Synthetic Group Dynamics in Entertainment Scenarios. In: Inter-
national Conference on Advances in Computer Entertainment Technology, ACM Press,
New York (2005)

14. Prendinger, H., Ishizuka, M.: Social Role Awareness in Animated Agents, AGENTS’01.
ACM Press, New York (2001)

15. Rehm, M., Andre, E., Nisch, M.: Let’s Come Together - Social Navigation Behaviors of
Virtual and Real Humans. In: Maybury, M., Stock, O., Wahlster, W. (eds.) INTETAIN
2005. LNCS (LNAI), vol. 3814, pp. 124–133. Springer, Heidelberg (2005)

16. Rehm, M., Endrass, B., Andre, E.: A Plug-and-Play Framework for Theories of Social
Group Dynamics. In: Gratch, J., Young, M., Aylett, R., Ballin, D., Olivier, P. (eds.) IVA
2006. LNCS (LNAI), vol. 4133, pp. 465–466. Springer, Heidelberg (2006)

17. Shao, W., Terzopoulos, D.: Autonomous Pedestrians. In: ACM SIGGRAPH Symposium
on Computer Animation, ACM Publishing, New York (2005)

18. Si, M., Marsella, S., Pynadath, D.: Thespian: Modeling Socially Normative Behavior in a
Decision-Theoretic Framework. In: Gratch, J., Young, M., Aylett, R., Ballin, D., Olivier,
P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp. 369–382. Springer, Heidelberg (2006)

19. Si, M., Stacy, M., Pynadath, D.: Thespian: Using Multi-Agent Fitting to Craft Interactive
Drama. In: International Conference on Autonomous Agents and Multi-Agent Systems,
pp. 21–28. ACM Press, New York (2005)

20. Thorisson, K.R.: Real-Time Decision Making in Multimodal Face-to-Face
Communication. In: Autonomous Agents, pp. 16–23. ACM Press, New York (1998)

21. Vilhjalmsson, H., Samtani, P.: MissionEngine: Multi-System Integration using Python in
the Tactical Language Project. PyCon, Python Software Foundation (2005)

22. Vilhjalmsson, H.: Animating Conversation in Online Games. In: Rauterberg, M. (ed.)
ICEC 2004. LNCS, vol. 3166, pp. 139–150. Springer, Heidelberg (2004)

23. Vinayagamoorthy, V., Gillies, M., Steed, A., et al.: Building Expression into Virtual
Characters. EUROGRAPHICS State of The Art Report, vol. 2006. The Eurographics
Association (2006)

24. Wang, N., Johnson, W.L., Mayer, R.E., et al.: The Politeness Effect: Pedagogical Agents
and Learning Outcomes. In: International Journal of Human-Computer Interaction,
vol. 22, Lawrence Erlbaum Associates, Mahwah (2007)

25. Warwick, W., Vilhjalmsson, H.: Engendering Believable Communicative Behaviors in
Synthetic Entities for Tactical Language Training: An Interim Report. Behavior
Representation in Modeling and Simulation, SISO (2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

