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Figure 1: A conversation group reacts to a passer-by and rearranges to avoid a collision in a tight space.

Abstract

Path following in games mostly focuses on avoiding collisions with
dynamic physical objects that appear along a chosen path to a given
destination. Some work also attempts to humanize the abstract path
returned by a path finding algorithm through methods like smooth-
ing. Games typically do not consider social factors during path
following, even though many depict social environments. Social
path following considers the social environment in particular, carv-
ing a trajectory that reflects awareness of other human beings and
their social activities. This includes awareness of territories that
have social significance but no concrete physical form, such as the
space between those having a conversation. This paper describes
work that extends a state-of-the-art predictive method for path fol-
lowing with social awareness, predicting and avoiding social colli-
sions. The work builds on a platform for social simulation, which
already models social territoriality and gaze behavior. The results
appear promising and highlight the importance of perceiving and
dealing with the social space along with the physical one.
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1 Introduction and Motivation

In virtual simulations, such as games, characters need to move
around the environment. To simplify the problem, the environment
is represented in two dimensions and the motion is managed using a
three-layer architecture [Reynolds 1999]: action selection, steering
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and locomotion. In particular we are interested in the second layer
since it relates to path following in a dynamic environment.

We want to construct a convincing path for an agent walking from
a start position to a goal position. A high density of other mov-
ing agents, complex structures inside the environment and real-time
constraints make this quite complex. The shortest path can easily be
produced from the global environment through specific algorithms
and data structures, but sometimes it is not enough. In fact it does
not take into account collisions with dynamic obsticles, realistic
motion, congestions and social rules. However, it presents a first
approximation and a good start. We use the popular A* algorithm
to provide the shortest path through an automatically generated nav-
igation mesh representing the static environment. After this path is
found, the focus shifts to addressing path following.

Path following is about adjusting the path without applying strong
corrections, avoiding collisions and considering all forces that rule
the environment. Therefore social path following means that agents
are affected by social forces such as human territories [Scheflen and
Ashcraft 1976], social behaviors and body language. We expect
a realistic path, without inconsistencies while maintaining good
performance. Our method builds on [Karamouzas and Overmars
2010], which uses a velocity-based approach to perform the col-
lision avoidance, adjusting speeds/orientations at each time step.
The algorithm is composed of three phases: 1) perception of agents
and obstacles through the peripheral vision of the agent setting up
a list of neighbors and time contacts; 2) building ranges of avail-
able speeds and orientations; 3) discretization of ranges, finding
the best combination considering a heuristic function about energy
consumption, deviation angle and risk of collision.

We extend this approach by predicting social intentions and move-
ments. We adopt a probabilistic model, monitoring typical behav-
iors of others that would indicate the start of a conversation be-
tween them [Bennett et al. 2010] (approaching space, mutual gaze
[Cafaro et al. 2009] and salutation). Each agent becomes aware of
approaching spaces and what territories to avoid in order to escape
”awkward” social situations (e.g. finding yourself in the middle of
someone elses’s conversation). To prevent stuck situations, we also
simulate social negotiation of space: a sort of a silent agreement,
a reciprocal understanding of intentions that forces agents to help
each other. Finally, exactly like humans in the real world, we add
social protocols and some randomness that make movements even
more realistic and unique.

Our model can be applied in a variety of simulations, including
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crowded environments. It is adaptive, so variables and parameters
are set up automatically based on available system resources. It
is possible to simulate different kinds of people, creating profiles
adding more/less energy consumption, social awareness, speed or
amplitude of orientation. We developed several scenarios to test
and to show the results of our method.

2 Related Work

Many have addressed the path planning problem. We refer the
reader to [Duives et al. 2013] for an exhaustive view of the state
of the art and a comparison and classification of general simulation
models. In particular this analysis evaluates each approach in dense
environments. Simulating social interactions we are mostly inter-
ested in new methods based on social forces and behaviors. Craig
W. Reynolds provided a solid foundation for this work with his con-
tributions on steering behaviors [Reynolds 2000], [Reynolds 1999].
Understanding motion dynamics, shared rules and stimuli that af-
fect interactions of animals, as well as humans, he proposed mental
models and forces to drive reactive agents. Even today, his contribu-
tion is an essential starting point for many researchers such as [Rat-
samee et al. 2012], [Yamaguchi et al. 2011], [Popelová et al. 2011].
Similar approaches are [van den Berg et al. 2008], [Karamouzas
and Overmars 2010] that further emphasize the adjustment of ori-
entation and speed. Mainly these models are focused on solving
the collision avoidance in any context through a continuous cy-
cle of perception-reaction, giving autonomy and independence to
each agent and ensuring good performance at the same time. Even
though robust, a possible drawback is a simulation of too rigid and
mechanical movements without integrating social forces and not
considering human-like behavior and territories. A social forces al-
gorithm is proposed in [Baig et al. 2014]. Taking into account the
sociology literature, the procedure is composed of three modules:
path planning, awareness of density crowds and personal reaction
bubble. The idea is to drive agents considering motivation, inter-
action, repulsive and resistive forces differentiating collision types
and providing priority.

Another type of approach consists of a data driven model to manage
the motion [Lee et al. 2007], [Paris et al. 2007]. The simulation is
ruled by a central brain that after getting information from videos
of real pedestrian builds trajectories and paths. In this way the sys-
tem is able to cluster virtual humans and to provide learning rules
that include social and psychological factors. Even if [Paris et al.
2007] has similar features to the velocity-based approaches (predic-
tion and best motion calibrated from motion capture data), these ap-
proaches do not fit our context perfectly in which each agent is inde-
pendent and the model is based on perception and reaction phases.

More recently some techniques have been presented to address an
aspect of the social problem. They are based on the idea that
most people in a crowd actually move in groups walking together
[Moussaı̈d et al. 2010]. Usually the group is composed of 2 to
4 members, there is no rigid patterns of formation and the speed
depends on the density of pedestrians. The approach consists of
considering groups as single units and the motion is the result of
pedestrian motivation, repulsive force with other pedestrian and re-
pulsive force from boundaries. [Karamouzas and Overmars 2012]
extend this research trying to model macro/microscopic behaviors:
for each time step agents follow the group path but solve its own
path following problem autonomously. [Karamouzas et al. 2013]
adopt minimization of space and time and is based on a linear pro-
gramming technique to resolve congestions and prevent deadlocks.
Note that a weak point of these methods is not to consider the full
dynamic nature of the social space, e.g. by already grouping people
together into conversations.

3 Approach

Before going into details of our approach, we need to remember
the set up of our simulation: several agents navigate, perceive and
interact; the virtual environment is represented by a two dimen-
sional plane; the time is discrete and for each time step a new ve-
locity vector is computed; obstacles that hamper movements are
walls or other virtual agents; the first approximate path is computed
once using the A* algorithm. Our approach builds on the work of
I.Karamouzas and M.Overmars [Karamouzas and Overmars 2010];
summarizing the algorithm it consists of three main steps in which
agents retrieve other colliding agents, define the range of admissi-
ble speed/orientation, find the optimal solution through an heuristic
function. We extend these three phases by adding social behaviors
and forces.

3.1 Basic Algorithm

During the first step, agents perceive potential colliding obstacles
using central and peripheral visual sensors. In other words, by
knowing the positions and interpreting velocities of others, the
agents predict collisions and build a limited list of potential col-
liding agents, ordered by expected time of contact. A collision is
predicted using the inequality of Euclidean distance:

‖(xj + vjt)− (xi + vit)‖ ≤ (rj + ri) ∗ incr

where x, v, t, r represent respectively positions, desired velocities,
time and radii of agent personal spaces.

The second phase determines the set of speeds Ui and orientations
Oi that avoid contact with the retrieved colliding agents. In these

Figure 2: Building ranges of speeds Ui and orientations Oi. From
[Karamouzas and Overmars 2010]

formulas (Fig.2) tc represents the time of contact with the most
threatening agent, Θdes and upref are respectively the desired ori-
entation and speed, umax is the maximum speed for agents, ∆umax

i

is the minimum between upref and the difference of umax and
upref , ∆Θmax

i has the same meaning for orientation. The other
variables are actually constants: tcmax, tcmid and tcmin are in-
tervals of time to give priority to collisions, δmid and δmax are
different amplitudes of the orientation angle.

In order to find a good balance between performance and real-
ism, we need to discretize the sets of orientations and speeds
(Fig.3). It is done automatically by the system considering the
density/complexity of the environment [Karamouzas and Overmars
2010]. Finally for each step the new velocity vector is computed us-
ing an heuristic function that mimimizes energy consumption, de-
viation angle and risk of collisions. The next section shows the



Approach Mutual Gaze Salutation Conversation
True True True 1.0
True True False 0.7
True False True 0.8
True False False 0.1
False True True 0.95
False True False 0.15
False False True 0.3
False False False 0.0

Table 1: Table containing all possible perceived events and the
heuristic probability that the perceived agents are about to have a
conversation

complete formula that has been revised in order to include social
behavior.

Figure 3: Transforming ranges from continuous to discrete

3.2 Prediction

Our agents are powered with social awareness that makes them able
to understand territories and to predict social intention. Perceiving
velocity vectors (movements related to a single time step) is the es-
sential condition for running the basic algorithm but just by predict-
ing future social interactions we can really improve the behavioral
realism. This process is done by interpreting typical signals that ap-
pear before a conversation identifying people that are approaching
each other. Thus, for each time step, each agent needs to monitor:

• approach: Checking if two or more partners are approaching
each other. Since sometimes paths are not simple lines due to
moving obstacles, using linear regression we can build a line
that approximates the motion and intentions of agents. The
procedure is able to manage two different situations: 1) two
agents that are approaching each other; 2) one agent standing
and the other one is approaching.

• mutual gaze: A simultaneous, sometimes non-continuous
eye contact. A mutual gaze of two/three seconds during the
approaching phase usually suggests that people are acquain-
tances and are going to be engaged in a conversation.

• salutation: Recognizable from specific gestures, smiles or a
few words. Since right now our simulator does not allow us
to simulate this feature the close salutation is approximated
by identifying a progressive decreasing of speed during the
approaching phase.

Collecting this information makes it is possible to build a proba-
bilistic model that predicts future conversations from perceived sig-
nals. Table 1 summarizes our heuristic model showing the proba-
bility of a conversation starting between to perceived agents based
on all possible perceptions of their activities.

Generating a random value or using a threshold value and com-
paring it with the assigned probability, the current agent decides

whether to consider it a future conversation or not. As result of
this procedure we have a new social behavior that consists of
respecting human territories avoiding crossing approaching spaces
and to interrupt future interactions. It can be used as new cost to
the heuristic function (Fig.4):

vnew
i = arg min

vcand∈FAVi

{

Energy︷ ︸︸ ︷
α

(
1− cos(∆φ)

2

)
+ β

∣∣‖vcand‖ − ‖vi‖
∣∣

umax

+ γ
‖vcand − vdes

i ‖
2umax︸ ︷︷ ︸
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+ δ
tcmax − tc
tcmax︸ ︷︷ ︸
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+ η
distmax − dist

distmax
· tcmax − tcAS

tcmax︸ ︷︷ ︸
Social Territory

}

Figure 4: Formula modified from [Karamouzas and Overmars
2010], taking social territory into account when computing the cost
of each velocity

Here vcand represents all candidates from discrete speeds and ori-
entations, vi is the previous velocity vector, α, β, γ, δ and η are
weights assigned to energy (orientation and speed), deviation, col-
lisions and social territory avoidance costs. Minimizing the total
cost means finding the best velocity vector to model the motion.

To prevent a deadlock or stuck situations we developed a new hu-
man behavior that consists of negotiation of space in accordance
with social rules. A typical example is two opposite flows of peo-
ple using the same gate. We simulate the non-verbal communi-
cation transmitted through gaze and body language to request and
give others more space, similar to what we see in the real world.
This behavior is the result of two different components:

• active: Predicting a possible congestion, the agent requests
more space gazing continuously at the individual that ob-
structs its movement expecting a reaction.

• passive: Perceiving a continuous gaze, the agent simply in-
creases the space dedicated to the passageway. If it is engaged
in a conversition, the reaction produces a rearrangement of the
formation.

3.3 Fine Tuning and Profiles

Getting information about the environment, the number of virtual
agents and their positions, our simulation is able configure the pa-
rameters to balance believability and performance. The main vari-
ables affected are the size of the list containing colliding agents
(proportional), the discretization interval (inversely proportional)
and the weights assigned to social rules used in the heuristic (in-
versely proportional). The algorithm has been implemented with
specific protocols: for example agents prefer to avoid obstacles go-
ing on the right or they are able to balance the heuristic costs ac-
cording to the environment properties. Moreover the general proce-
dure is affected by stochastic factors, something similar to a random
force [Baig et al. 2014], that improves believability by producing
multiple unique behaviors.



Finally, it is possible to build customized profiles of agents (Fig.5),
setting up certain abilities, in order to simulate different types of
locomotion and stereotypes of people. For example, a rushed agent
does not care about collisions and wants to reach a destination as
soon as possible; so we need to give more priority to the deviation
cost and reduce the orientation angle. A stealthy agent has exactly
the opposite behavior: it gives more priority to collisions (effec-
tively avoiding them) and has more time to reach the destination.

Figure 5: Examples of profiles

4 Results

We implemented our approach in our CADIA Populus social sim-
ulation platform [Pedica and Vilhjálmsson 2010], resulting in a
series of short prototype scenarios. The platform is based on the
perception-reaction model, it provides human behaviors and face-
to-face interaction including typical gestures, animations and terri-
torial dynamics. It is written in Python and runs on the Panda3D
engine. Moreover in this demo each agent has a default profile and
in almost every scenario we use a camera that shows the scene from
the top. The scenarios are all available in an accompanying video
for judging the believability. 1

4.1 Overtaking

The first situation (Fig.6) demonstrates two characters that have the
same destination but different speeds. The character that starts fur-
ther left changes its orientation to avoid the character in front, and
continues adjusting its trajectory towards the desired destination
without cutting across the path of the other character. This is a
typical pedestrian situation.

Figure 6: First scenario: Pedestrian overtaking another

4.2 Avoiding the Player

In the second scenario (Fig. 7) one character is driven by social path
following and the other one is controlled by the player, who can set
random destinations by clicking on the screen. The autonomous
character does its best to stay out of the player’s way.

1http://secom.ru.is/videos/SocialPathFollowing

Figure 7: Second Scenario: Avoiding a dynamic player character

4.3 Crowds

The third scenario (Fig. 8) is useful for putting strain on the col-
lision avoidance by introducing crowded circumstances: groups
of pedestrians have opposite destinations, their positions are very
close and their movements converge in a specific area of the envi-
ronment (congestion). The results seem fairly believable. Running
this scenario more times, each execution always produces different
paths and dynamics, exactly what we expect in the real world.

Figure 8: Third Scenario: Crowd collision avoidance

4.4 Predicting Conversation

In the fourth scenario (Fig. 9) we have a couple of future conver-
sants that are approaching each other and a character that wants to
reach a destination on the other side of the approaching line. The
moving agent monitors the social behaviors of the other characters
and after perceiving a future interaction it avoids the social territory
that is forming. In this case we can notice that the agent decides to
avoid the obstacles by passing on the left because it predicted the
future positions of the conversants and this movement consumes
less energy than going on the right.

Figure 9: Fourth Scenario: Detecting and avoiding dynamic social
territory

4.5 Negotiating Space

The last scenario (Fig.10) and (Fig.11) shows a non-verbal negotia-
tion of space. There is a narrow corridor delimited by walls, a stable
conversation and a moving character that needs to go to the other



end of the corridor. Perceiving a small passageway, through gaze,
the walking character requests more space; the nearest conversant
notices the behavior and moves accordingly, avoiding the awkward
situation of having the approaching character crash through the con-
versation. Actually this last behavior is made even a bit more inter-
esting and complex by the social simulation platform, which drives
the conversation group. It executes a common attention rule in the
group: if one of the conversants sees someone approaching, it trig-
gers the others to also look at the agent [Pedica and Vilhjálmsson
2010].

Figure 10: Last scenario: non-verbal negotiation of space. Show-
ing a series of gazes (1 and 2) and a final movement (3)

Figure 11: Last scenario: non-verbal negotiation of space. Show-
ing a series of gazes (1 and 2) and a final movement (3) from first
person perspective

5 Conclusion and Future Work

We presented a model that looks to theories of social behavior to ad-
dress the path following problem. We believe that increasing social
perception, knowledge and ability of agents is the right way to build
believable motion. It needs to strike a good balance between pro-
tecting/respecting social territories and reaching goals and desired
destination. Building on state-of-the-art velocity- based methods,
our approach is flexible through parameterization.

Whe have included a few chosen examples that visually demon-
strate the power of our approach, but a more thorough evaluation,
including direct comparisons and quantitative analysis, is part of
future work.

Looking at the related work for inspiration, a few clear improve-
ments can be made. First of all we could optimize certain data
structures, such as the navigation meshes, to ensure better perfor-
mance of the algorithm. We could think about how to include mo-
tion in groups and its dynamics, as described in [Moussaı̈d et al.

2010]. Another improvement is a full prediction of congestions, as
sort of ”escape behavior” that can be activate just in critical situa-
tion. An interesting way to improve the approach is developing a
social A* Algorithm, working in the path finding module, trying to
build an heuristic function based on social costs.

Finally, we intend to integrate this work with our latest social sim-
ulation framework called Impulsion, which is based on behavior
trees and has been implemented in the Unity 3D engine [Pedica
and Vilhjálmsson 2012].

Acknowledgements

Many thanks to Claudio Pedica for providing and supporting the use
of CADIA Populus in this research. Also for comments on this pa-
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